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Abstract

In this work, we solve the problem of active camera lo-
calization, which controls the camera movements actively
to achieve an accurate camera pose. The past solutions are
mostly based on Markov Localization, which reduces the
position-wise camera uncertainty for localization. These
approaches localize the camera in the discrete pose space
and are agnostic to the localization-driven scene property,
which restrict the camera pose accuracy in the coarse scale.
We propose to overcome these limitations via a novel active
camera localization algorithm, composed of a passive and
an active localization module. The former one optimizes the
camera pose in the continuous pose space by establishing the
point-wise camera-world correspondences. The latter one
explicitly models the scene and camera uncertainty compo-
nents to plan the right path for accurate camera pose estima-
tion. We validate our algorithm on the challenging localiza-
tion scenarios from both synthetic and scanned real-world
indoor scenes. Experimental results demonstrate that our
algorithm outperforms both the state-of-the-art Markov Lo-
calization based approach and other compared approaches
on the fine-scale camera pose accuracy.

1. Introduction
The problem of camera localization is to estimate the ac-

curate camera pose in a known environment. Such a problem
is of great importance in many computer vision and robotics
applications. The research efforts in the past decades have
been mostly devoted to camera localization in a passive man-
ner [3, 4, 9, 10, 27, 37, 42, 45], which predicts the camera
pose from the provided RGB/RGB-D frame. However, the
passive localization approaches become unstable and fragile
when they run into many well-known localization challenges,
such as repetitive objects [21] and textureless regions [7].

To resolve the aforementioned issues, the ability of ac-
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tive camera movement has been deployed in a set of works
[13, 19, 22, 26], also known as active camera localization.
Three critical questions need to be answered to solve such a
problem: 1) How to locate: how to localize the camera for
the most accurate camera pose. 2) Where to go: the cam-
era is initialized at an unknown position in the environment,
where it should move for accurate active localization. As
there are numerous localizable positions in the continuous
camera pose space, the problem of active localization be-
comes highly ambiguous and difficult to solve. 3) When
to stop: the agent is unconscious of its ground truth cam-
era pose, hence when it should decide to stop the camera
movement.

Due to the difficulties raised by these questions, there
has been very little research in this field. Most active lo-
calization works are inspired by Markov Localization [8], a
passive localization approach that takes random actions to
reduce camera uncertainty within a 2D discrete belief map
by Bayesian filtering. To decide camera movements, the
early research of active localization [19] handcrafts greedy
heuristics to minimize the camera uncertainty in the coming
step, while the recent work [13] deploys a policy network to
directly estimate the camera movement for higher localiza-
tion accuracy via reinforcement learning. These approaches
have dominated the active localization field in the past few
decades. However, they still suffer from a few drawbacks
that make them prohibitive for practical applications: 1)
Camera localization in the coarse-scale discrete pose space.
The localization accuracy relies on the predefined resolution
of the 2D discrete belief map (40cm, 90◦ [13]), which is usu-
ally unsatisfactory for many practical applications. Pursuing
fine-scale accuracy (5cm, 5◦) would result in significantly in-
creased state space, which is both memory and computation
inefficient, and not scalable to large environments and con-
tinuous camera pose space. 2) Camera movement agnostic to
localization-driven scene uncertainty. The past approaches
control the actions mainly based on the camera uncertainty,
without considering the localization-driven scene uncertainty
information much. Scene uncertainty is an intrinsic scene
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property, which is small for geometry- and texture- rich
regions and large for repetitive and textureless regions (com-
mon localization challenges). Scene uncertainty serves as
the important guidance for camera movements towards the
localizable scene region, and ignorance of such information
limits the localization accuracy.

To overcome the limitations exhibited in the existing ap-
proaches, we propose a novel active camera localization
algorithm solved by reinforcement learning for accurate cam-
era localization. Our algorithm consists of two functional
modules, the passive localization module and the active lo-
calization module. The former passive module answers the
“How to locate” question, and estimates the step-wise cam-
era pose in the entire episode. It abandons localization in
the discrete pose space, instead learns to predict the world
coordinates from the single RGB-D frame, and optimizes
the instant camera pose in the continuous pose space via the
established camera-world coordinate correspondences. The
latter active module consists of the scene uncertainty and
camera uncertainty components that answer the “Where to
go” and “When to stop” questions separately. The scene
uncertainty component explicitly models the localization-
driven scene properties and instant localization estimations
in the scene, hence it aims to guide the camera movement
towards the localizable region. The camera uncertainty com-
ponent explicitly models the quality of camera pose esti-
mations, and determines the adaptive stop condition for the
camera movement.

We validate our algorithm on both the synthetic and
scanned real-world indoor scenes. Experimental results
demonstrate that our proposed algorithm is able to achieve
very high fine-scale camera pose accuracy (5cm, 5◦) com-
pared to the Markov Localization based approach and other
baselines. Benefited from the proposed scene uncertainty
and camera uncertainty components, our algorithm learns
various intelligent behaviors.

2. Related Work
The past camera localization approaches are mostly pas-

sive. They can be separated into two categories, which
mainly differ in the input that comes from a single frame or
a sequence of frames.

For single-frame camera localization, one trend focuses
on direct camera pose estimations. The early works explore
various image features to retrieve the most similar database
image for the pose approximation of a reference image. The
traditional retrieval-based approaches mostly rely on hand-
crafted features [34], which are replaced with the recent
deep learning features [1, 33, 38]. Besides image retrieval, a
different popular solution is to learn a deep neural network
to directly regress the camera pose [6, 23, 24, 43]. The other
trend for camera localization is indirect pose estimation that
employs a two-step procedure, where the first step is to

regress the 3D scene coordinates from the input RGB/RGB-
D observation, and the second step takes a RANSAC based
optimization to produce the final camera pose. The popular
scene coordinate regression approaches are implemented
as a decision tree [9, 10, 27, 37, 42] or a convolution neural
network [3, 4, 45]. These approaches builds structure-based
knowledge in a more explicit way, and performs better than
image retrieval on small- or middle- scale environments.

For temporal camera localization, one trend focuses on
extending PoseNet to the time domain [14,30,40,44], whose
performance is however limited by the image retrieval nature
of PoseNet, as pointed out by [35]. The other more popular
trend assumes a uniform belief of the current camera pose,
and leverages Bayesian filtering to iteratively maximize the
belief until a certain stop condition is reached. According
to the representations of the belief, these approaches can
be separated into Kalman Filter [15, 32, 47], Markov Lo-
calization [18, 20] and Monte-Carlo localization [16, 39].
Most active localization approaches are developed based on
Markov Localization, which characterizes the belief as a
2D discrete map grid and the belief is maximized when the
camera randomly navigates in the environment. However,
Markov Localization suffers from expensive computation
due to the huge state space for step-wise comparison.

The pioneering work in active localization is active
Markov Localization [8], which adopts the greedy strategy
for action selection to reduce the camera pose uncertainty.
This work inspires a few followups [22, 26]. However, as
the problem of active localization is highly ambiguous, the
traditional approaches mostly fall into the shortsighted so-
lutions. Thanks to the rapid development of reinforcement
learning, active neural localization (ANL) [13] firstly learns
a policy model to seek a more accurate solution from visual
observations. All the above approaches benefit from Markov
Localization, yet also suffer from the limited discrete cam-
era pose space and ignorance of scene-specific localization
knowledge, as discussed in the Introduction session.

3. Approach

3.1. Task Setup

Initializing the camera at an unknown position and ori-
entation in an environment, the problem of active camera
localization is to control the camera movement actively to-
wards a better place to obtain an accurate camera pose. Such
a task provides us with two inputs. 1) A sequence of RGB-D
frames along with the corresponding ground truth camera
poses, denoted as {I(t)

basis, C
(t)
basis}mt=1, where m is the num-

ber of frames, following previous works [9, 10, 27, 37, 42].
Such a posed RGB-D stream can be easily obtained by the
SLAM system [28] with visual odometry and loop closure
and roughly covers the scene. It provides the basis for both
passive and active localization. 2) The instant RGB-D frame
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I(t) obtained during active localization.
The entire procedure of our framework is as follows. With

the initial RGB-D frame I(0), the passive localization mod-
ule estimates the current camera pose Ĉ(0), and the active
localization module estimates the next action for camera
movement and then obtain a new RGB-D frame. Such a pro-
cess is iterated until the active localization module decides
to stop the movement, and the final camera pose is chosen
as the estimated camera pose at the last step. The entire
framework is shown in Figure 1, and elaborated below.

3.2. Passive Localization Module

The passive localization module answers the “How to
locate” question. Instead of localizing the camera in the
discrete pose space within a grid-based map as previous
approaches [13,19], we propose to optimize the camera pose
in the continuous pose space through a passive localizer. We
adopt the state-of-the-art approach, decision tree [10], to
achieve this purpose thanks to its online adaption ability in
novel scenes. We briefly describe it below1.

A decision tree, denoted as DT , takes a 2D image pixel
I

(t)
j sampled from the captured RGB-D frame I(t) as in-

put, and performs hierarchical routing to estimate the in-
dex of one leaf node DT (i), which consists of a set of
3D scene points {Pdt,k}k∈Ωdt,DT (i)

, where Ωdt,DT (i) is the
index set of 3D points belonging to the leaf node DT (i)
and Pdt,k is back-projected in the world space with the
posed RGB-D stream {I(t)

basis, C
(t)
basis}mt=1. Then it randomly

samples a 3D scene point from the distribution fitted from
{Pdt,k}k∈Ωdt,DT (i)

to establish the 2D-3D correspondence
between the camera and world space. With correspondences
obtained for many such input pixels, it infers the ranked
camera pose hypotheses via pose optimization over the cor-
respondences, and determines the camera pose Ĉ(t) for the
input frame I(t) by iteratively discarding the worse pose
hypotheses until the last one left. The parameters of decision
tree lie in the split node determining the routing strategy.
They are pre-trained on the 7-Scenes dataset [37] and re-
quire no further finetuning. In the novel scene, only the leaf
nodes are adaptively refilled online with the posed RGB-D
stream2. The 3D scene model Dscene is further constructed
by fusing the posed RGB-D stream and the basis to generate
the camera and scene uncertainty component for the active
localization module.

3.3. Active Localization Module

In the vast literature of passive camera localization, two
important factors have been studied widely for accurate lo-

1Note we do not consider the implementation of passive localizer as our
technical contribution, yet focus on how to make the best use of it for the
entire task.

2Please refer to [10] for more implementation details of the decision
tree.

calization. The first is camera uncertainty, which indicates
the confidence of camera pose estimations, and determines
which camera pose to keep for localization [5, 10, 37]. The
second is scene uncertainty, which refers to the effectiveness
of each scene region for accurate localization. For example,
the passive localization approaches are able to achieve al-
most 100% camera pose accuracy (5cm, 5◦) in scenes with
small uncertainties, such as the texture- and geometry- rich
scenes [37, 41], yet underperform when there exhibit the
scene regions with large uncertainties, such as textureless
regions and repetitive objects [7], which are all the com-
mon localization challenges. We consider that both camera
uncertainty and scene uncertainty are also necessary for ac-
curate active localization, while the focus of most active
localization works lies in the camera uncertainty. Our active
localization module consists of the scene uncertainty and
camera uncertainty components, which answer the “Where
to go” and “When to stop” questions separately.

3.3.1 Scene Uncertainty Component

Scene uncertainty is an intrinsic localization-driven scene
property, and we describe such property from two perspec-
tives, where the camera is located and what underlying part
of the scene is observed are more effective for accurate lo-
calization. To model the above information, we propose the
camera-driven scene map and world-driven scene map. They
answer the “Where to go” question, and guide the camera
movement towards scene regions with smaller uncertain-
ties by combining the scene uncertainty property and the
estimated camera properties (pose/world coordinate). The
scene uncertainty property is purely determined by the scene
model Dscene and the passive localization module, hence
pre-computed and invariant to the active localization process,
while the estimated camera properties are instantly com-
puted from the captured RGB-D frame during the camera
movements.

Camera-driven scene map: The camera-driven scene
map M (t)

cd at time step t is represented in the form of the
2D top-view orthographic projection of the 3D scene model
Dscene, and visualized in Figure 2. It consists of three com-
ponents, position-wise uncertainty value Ucd, camera pose
estimations of the current and history frames F (t)

cd_c, F
(t)
cd_h.

The scene map M
(t)
cd is computed as the position-wise

concatenation of the three components and thus of size
X × Y × 3, where X , Y are the map size,

M
(t)
cd = Concat{Ucd, F

(t)
cd_c, F

(t)
cd_h} (1)

To filter out the invalid camera positions, we initialize all
the map channels as the binary traversable map where the
traversable and obstacle positions are filled with 0 and −1
separately, and only update the values at traversable posi-
tions.
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Current camera pose 
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a) Passive localization module b) Active localization module

World-driven 
scene map 𝑴𝑴𝒘𝒘𝒘𝒘

(𝒕𝒕)

Camera-driven 
scene map 𝑴𝑴𝒄𝒄𝒄𝒄
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Camera 
Uncertainty

𝑼𝑼𝒄𝒄𝒖𝒖
(𝒕𝒕)

Stop?
Yes/No

Policy 
Network

History camera poses
{�𝑪𝑪(𝒕𝒕−𝑵𝑵𝒇𝒇), …, �𝑪𝑪(𝒕𝒕−𝟏𝟏)}

Posed RGB-D stream {𝑰𝑰basis
(𝒕𝒕) ,𝑪𝑪𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

(𝒕𝒕) }𝒊𝒊=𝒕𝒕𝒎𝒎

Figure 1. The full pipeline of our algorithm. a) Given the current RGB-D frame, the passive localizer estimates its camera pose, then b)
the policy network takes the scene uncertainty component (scene map) to estimate the next action for camera movement, and the camera
uncertainty component determines when to stop the movement. The 3D scene model is fused from the posed RGB-D stream, and further
combined with the estimated current and history camera poses to construct the camera and scene uncertainty components.

The uncertainty channel Ucd describes the probability of
successful passive localization at each valid camera position
in the scene map. To be specific, for each valid camera
position, we render RGB-D frames along Ncd uniformly
sampled camera directions with the scene model Dscene,
and estimate the corresponding camera poses via the passive
localization module. The position-wise uncertainty value
Ucd,i is inversely proportional to the camera pose accuracy
(within λcd cm, λcd degrees) averaged over all the rendered
RGB-D frames,

Ucd,i = 1− 1

Ncd

∑
j∈[1,Ncd]

A(j) (2)

where A(j) is the binary camera pose accuracy for the jth
frame.

The current camera pose estimation channel F (t)
cd_c indi-

cates where the camera is located in the scene map estimated
from the current RGB-D frame I(t). As the camera pose is
estimated in the orientation-aware continuous space, and not
compatible with the orientation-agnostic discrete scene map,
to minimize this gap, we simply discretize the camera pose
and project it onto the 2D scene map by only considering its
translation on the horizontal plane. However, the estimated
camera pose formulated in this way is nothing but a single
point shown in the scene map, and tends to be overwhelmed
by its blank neighborhood via the common convolution op-
erations. To highlight the importance of the camera pose
information in the 2D map, we draw a distance map centered
on the discretized camera position via distance transform [2]
as F (t)

cd_c. For the history camera pose estimation channel,
we obtain the estimated camera positions in the 2D scene
map for the last Nf frames (I(t−Nf ), ..., I(t−1)) same as the

current channel, and draw a distance map centered on the
history camera positions via distance transform as F (t)

cd_h.
World-driven scene map: The world-driven scene map

M
(t)
wd at time step t is represented in the form of the 3D point

cloud sampled from the scene model Dscene, and visualized
in Figure 2 from the top view for better comparison with the
camera-driven scene map. It consists of four components,
the x, y, z world coordinates of the scene points Pwd, point-
wise uncertainty value Uwd, world coordinate estimations
of the current and history frames F (t)

wd_c, F
(t)
wd_h. The scene

map M (t)
wd is computed as the point-wise concatenation of

the four components and thus of sizeNwd_p×6 (withNwd_p
points and 6 channels),

M
(t)
wd = Concat{Pwd, Uwd, F

(t)
wd_c, F

(t)
wd_h} (3)

The uncertainty channel Uwd describes the effectiveness
of each observable scene point to the successful passive
localization, and the point-wise uncertainty value is highly
related to the viewpoint where the scene point is observed.
To compute the uncertainty value, we first render Nwd_r
RGB-D frames that are randomly positioned and oriented
within the traversable region. We associate each 3D scene
point Pwd,i with an index set of 2D image pixels Ωwd,i that
can be back-projected to it as follows,

Ωwd,i = {j|∀j ∈ Ωwd_r, ‖Pwd_r,j − Pwd,i‖ < λwd} (4)

where Ωwd_r is the index set of all the image pixels in the
Nwd_r rendered frames, Pwd_r,j is the 3D point in the world
space back-projected from the pixel j in Ωwd_r, and λwd is
a threshold and measured in centimeters.
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Figure 2. Left: visualization of the different channels in both the camera-driven and world-driven scene maps. The value range of F (t)
cd_c and

F
(t)
cd_h is scaled into [0, 1] for better visualization with the color bar. Right: we render two first-view images with rich (green camera) or poor

(blue camera) geometry and texture details, which are consistent with the uncertainty values shown in Ucd and Uwd.

Then for each 2D pixel, we evaluate its uncertainty value
Uwd_r,j as the estimation quality of the passive localizer,
which in our case is the routing quality of the decision tree
and adapted from the common measurement for the camera
pose evaluation [9, 37]. To be specific, Uwd_r,j is computed
as a binary value that judges if its back-projected 3D point
Pwd_r,j is close to any 3D point in its routed leaf node of the
decision tree,

Uwd_r,j =

{
0 (mink∈Ωdt,DT (j)

‖Pwd_r,j − Pdt,k‖) < λwd

1 otherwise
(5)

where Ωdt,DT (j) is the index set of the 3D points Pdt,k in
the leaf node DT (j) where the pixel j is routed. Then the
uncertainty value of each 3D scene point Uwd,i is averaged
over the ones of its associated 2D pixels,

Uwd,i =
1

Nwd,i

∑
j∈Ωwd,i

Uwd_r,j (6)

where Nwd,i is the size of the index set Ωwd,i.
The current world coordinate estimation channel indi-

cates where the world coordinates back-projected from the
current RGB-D frame using the estimated camera pose are
located on the scene point cloud, hence is computed as the
point-wise binary value that describes if each scene point is
occupied by at least one back-projected world coordinates.
To be specific, for each scene point Pwd,i, its binary value
F

(t)
wd_c,i is outputted by an indicator function based on the

unidirectional Chamfer distance from the estimated world
coordinates to the scene point,

F
(t)
wd_c,i =

{
0 (min

l∈Ω
(t)
f

‖Pwd,i − P (t)
f,l ‖22) < λwd

1 otherwise
(7)

where Ω
(t)
f is the index set of 3D points P (t)

f,l back-projected
from the current frame I(t) with the estimated camera pose
Ĉ(t).

The history world coordinate estimation channel is simply
averaged over the last Nf frames. Specifically, F (t)

wd_h,i is
computed as,

F
(t)
wd_h,i =

1

Nf

∑
t′∈[1,Nf ]

F
(t−t′)
wd_c,i (8)

Analysis of scene uncertainty: We visualize the com-
puted uncertainty channel in both the camera-driven and
world-driven scene maps in Figure 2. The uncertainty value
denotes how much the valid camera positions and observable
scene points are uncertain to successful camera localization.
For better understanding of the computed uncertainty values,
we also render two first-view images with the green and
blue cameras separately in the scene. The blue camera cap-
tures an image with poor texture and geometry, which is a
common localization challenge, correspondingly, its camera
position and observed scene points in the uncertainty chan-
nel all contain very large uncertainties. On the other hand,
The green camera observes an image with rich texture and
geometry, which is usually easy for accurate localization,
correspondingly, its camera position and observed scene
points mostly contain small uncertainties. The above ob-
servation further validates the design of the proposed scene
uncertainty component.

3.3.2 Camera Uncertainty Component

Camera uncertainty is an intrinsic camera property, which
represents the quality of the current camera pose estimation
during camera movements. The camera uncertainty com-
ponent answers the “When to stop” question, and hence
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Figure 3. Justification of the camera uncertainty component. The
color bar indicates the sample number.

determines the adaptive stop condition for active movements.
Ideally, the camera uncertainty value should be computed
by directly comparing the estimated camera pose with the
ground truth camera pose, which is however absent during
active movements. To alleviate the above difficulty, instead
of directly dealing with the camera pose, we propose to calcu-
late the camera uncertainty value by comparing the captured
depth observation that represents the ground truth camera
pose and the depth image projected from the 3D scene model
Dscene with the estimated camera pose Ĉ(t). To be specific,
given the observed depth and projected depth images, we
first back-project the two images into the point clouds in the
camera space with the known camera intrinsic parameters.
Then we leverage the recent iterative closest point (ICP)
approach [29] to register the two point clouds and estimate
the relative camera pose between them. When the two point
clouds are roughly aligned, the adopted ICP approach is able
to achieve very tight point cloud alignment. Therefore, the
estimated relative pose indicates how far the current camera
pose estimation Ĉ(t) is to the ground truth, and is treated as
the camera uncertainty component U (t)

cu ∈ R2.
To ease policy learning, many previous works fix the

episode length [8, 13, 22] for camera movements, which is
inefficient in implementation. In this work, we propose to
adaptively stop the camera movement based on the proposed
camera uncertainty component. To be specific, we consider
a successful localization to stop the camera movement when
the camera uncertainty component is within λcu cm, λcu
degrees.

Analysis of camera uncertainty: To justify the effec-
tiveness of the camera uncertainty component, we evaluate
how close the estimated relative pose is to the ground truth in
Figure 3, which contains 4500 samples randomly collected in
the indoor scenes introduced in Section 4.1. We can observe
that most samples lie on the diagonal lines, which means
the relative pose estimations are accurate in general. To be
specific, when the estimated relative poses are within 5cm,
5◦ (2362 samples), most samples (94.14% = 2362/2509) are
truely within 5cm, 5◦ compared to the ground truth (2509
samples). It means the adaptive stop condition judged by the

camera uncertainty component is trustworthy.

3.3.3 Reinforcement Learning Formulation

We optimize the policy with the state-of-the-art off-policy
learning method Proximal Policy Optimization (PPO) [36]
by maximizing the accumulated reward in the entire episode.
The policy network is detailed in the supplementary material.

Reward function: We design the reward R, consisting
of a slack reward Rs and an exploration reward Re. The
slack reward punishes unnecessary steps and is defined as
Rs = −0.1, which gives a negative reward for every action
performed. The exploration rewardRe awards the agent for
visiting the unseen cells to avoid repeated traversal among
the same region following [31, 46]. To achieve this, we
maintain a 2D occupancy map with the same map size as
the camera-driven scene map, and each cell is filled with the
visit count from the episode initialization. ThenRe = 0.1/v,
where v is the visit count in the current occupied cell, whose
position is obtained from the ground truth as the reward
is only employed during training. The final reward is the
summation of both rewards,R = Rs +Re.

Policy input: The input of the policy should encode the
knowledge of the sensor input and the scene, and have posi-
tive guidance for the agents to move towards more localiz-
able regions acknowledged by the passive localization mod-
ule. In order to achieve this goal, the policy takes the scene
uncertainty component at time step t as input {M (t)

cd ,M
(t)
wd}.

Action space: Following the previous active localization
setting [13, 19], we assume that the agent (camera) moves
with the 3-DoF (Degree of Freedom) action space within
the 1-meter high 2D plane parallel to the ground. The agent
is capable of performing three actions, move forward, turn
left and turn right. The agent moves forward by 20cm, and
turns left/right by 30◦. We further disturb the actions with
Gaussian noises as introduced in the supplementary material.

4. Experiments
4.1. Experimental Setup

Data processing: We evaluate our algorithm on both
the synthetic and scanned real-world indoor scenes. To al-
leviate the difficulty of creating the common localization
challenges in the synthetic data, we collect 35 high-quality
indoor scenes of average area 40.91m2, that feature tex-
tureless walls, repetitive pillows/drawings, etc, by design,
and provide a train/test split of the scenes (train/test: 15/20
scenes). To prepare for the scanned real-world data, we
collect 5 indoor scenes of average area 64.82m2 from the
public Matterpot3D dataset [11] only for evaluation. For
each indoor scene, we provide a list of data as follows:
• A sequence of <RGB-D image, camera pose> pairs
{I(t)

basis, C
(t)
basis}mt=1 that provides the basis for localization

6



ACL-synthetic ACL-real

Methods Accuracy (%) #steps Accuracy (%) #steps

ANL [13] 1.26 100 0.98 100
No-movement (DecisionTree) 9.35 0 6.80 0
No-movement (DSAC) 14.90 0 7.80 0
Turn-around 25.00 12 35.20 12
Camera-descent (t+1) 61.55 22.90 61.40 26.85
Camera-descent (t+2) 55.30 22.60 59.20 25.78
Scene-descent 57.65 18.56 54.20 16.87

Ours (w/o Re&M
(t)
cd ) 67.65 17.40 70.60 19.71

Ours (w/o Re&M
(t)
wd) 66.40 16.27 67.40 18.63

Ours (w/o Re) 72.50 18.57 73.00 20.72

Ours 83.05 17.33 82.40 17.90

Table 1. Numerical results on the synthetic and scanned real-world indoor scenes.

Figure 4. Plot of the localization accuracy that varies with different maximum step lengths.

and roughly covers the scene.
• Instant RGB-D frame I(t) obtained during active localiza-

tion.
• 100 test images in each test scene. They are randomly

sampled in the scene region of large uncertainties to in-
crease the localization difficulty (1 meter away from the
positions of Ucd,i ≤ 0.5).
We name the synthetic dataset ACL-synthetic, and the

real-world dataset ACL-real. Our algorithm is trained only
on the train split of the ACL-synthetic dataset, and evalu-
ated on both the test split of the ACL-synthetic dataset and
the entire ACL-real dataset. During training, the camera is
initialized randomly in the scene. During evaluation, the
camera is initialized with one of the 100 test images. More
details about both datasets3 are in the supplementary mate-
rial.

Training setting: The passive localizer is adapted online
in novel scenes with the posed RGB-D stream as mentioned
in Section 3.2, hence only the policy network needs to be
trained in our algorithm. In our experiment, we employ
the Adam [25] to optimize the network weights with the
initial learning rate of 3 × 10−4. Some hyper-parameters:
Ncd = 12, Nwd_r = 1000, Nwd_p = 214 = 16384, Nf =

3Note we do not claim the contribution of the collected indoor scenes,
which can be replaced with any ones in public indoor scene datasets.

5, X = 256, Y = 256. Following the popular camera pose
accuracy measured by 5cm, 5◦ [3, 4, 9, 10, 27, 37, 42, 45], we
set λcd = λwd = λcu = 5. It means we encourage the agent
to move to the scene region where the camera pose estimated
from the passive localization module is within 5cm, 5◦ to
the ground truth, and stop the camera movement when it
believes the estimated camera pose is within 5cm, 5◦ to the
ground truth.

4.2. Compared Approaches

We detail the compared approaches below.
• No-movement. It only takes use of the passive localiza-

tion module to estimate the camera pose for the initial test
frame. We adopt two passive localizers for comparison,
the default decision tree [10] (No-movement (Decision-
Tree)) and the popular CNN-based passive localizer [3]
(No-movement (DSAC)).

• Turn-around. This baseline works by turning a circle
along the vertical axis for 12 uniformly-sampled direc-
tions without any forward movement, and stopping at the
camera pose with the smallest camera uncertainty value.

• Camera-descent. It iterates over all the possible actions
in the future steps and selects the one with the smallest
camera uncertainty value as the following path, hence it
moves along the camera uncertainty descent direction. It

7



d) Failure case e) Camera-driven uncertainty channel f) World-driven uncertainty channel

b) Long trajectorya) Starting from the same origin c) Initial textureless observation

Figure 5. Qualitative results. White arrow: start position; Green arrow: end position (successfully localized); The dots with color gradient
indicate the path the agent takes. Intelligent behaviors: a) Starting from the same location, the agent travels to various regions for localization.
b) The agent is able to travel along a long trajectory for accurate localization. c) Initialized with a textureless image, the agent emerges
the turn around behavior for localization. Failure case: d) The agent fail to get out of a small room. Uncertainty visualization: e) The
camera-driven uncertainty channel. f) The world-driven uncertainty channel.

stops when it triggers our adaptive stop condition. De-
pending on the number of explored future steps (1/2 steps),
we derive two baselines, Camera-descent (t+1/t+2). We
adopt beam search to implement Camera-descent (t+2)
for memory efficiency.

• Scene-descent. It assumes the estimated camera pose
is roughly correct, and computes the shortest path from
the estimated camera pose to the more localizable region
(Ucd,i ≤ 0.5) in the camera-driven uncertainty channel.
Therefore, it moves along the scene uncertainty descent
direction. It stops when it finishes the traversal over the
shortest path.

• ANL. Active neural localization (ANL) [13] is a state-
of-the-art active localization approach derived from the
Markov Localization. Due to the significant requirement
of memory and computation resources, its camera pose is
limited at the resolution of 20cm, 90◦ with Nvidia Tesla
V100 of 32G memory in our implementation (40cm, 90◦

in [13]).

4.3. Evaluation Metrics

The major goal of active camera localization lies in
achieving higher camera pose accuracy. We evaluate the
accuracy (%) as the proportion of successful localization
episodes whose translation and rotation error for the final
camera pose is within 5cm, 5◦, a fine-scale measurement
compared to 40cm, 90◦ adopted in ANL [13]. We further
compute the number of steps (#steps) taken to finish the
successful localization acknowledged by the accuracy mea-
sure. It is only a complementary metric, while we value the
accuracy most.

4.4. Results

Starting from a bad location, it may take a very long
episode to stop the camera movement for the compared
approaches. To avoid such corner cases, we limit all the
compared approaches with a maximum step length, which
is 100 for valuation. The numerical results are shown in
Table 1. For more results, please refer to the supplementary
material.

Comparison with baselines: We analyze the results in
the synthetic indoor scenes (ACL-synthetic) first. The No-
movement baselines achieve upmost 14.90% accuracy, indi-
cating the fact that passive localization is not sufficient in our
challenging localization scenarios. By enabling the rotation
actions, the accuracy of the Turn-around heuristic is only
25.00% at most, which suggests the importance of active
camera movements. The Camera-descent and Scene-descent
baselines contain smarter designs based on our proposed
camera uncertainty and scene uncertainty components, and
also significantly improve the accuracy. The Camera-descent
baseline decides its next action by foreseeing all the possi-
ble actions in the future steps (t+1/t+2). Such a strategy
costs additional time steps (back and forth traversal over all
the actions), which cannot be conducted in background due
to the fact that the ground truth camera pose is unknown
and hence real actions need to be performed to compute the
camera uncertainty. The additional cost limits the accuracy
within the limited number of steps on the other hand, there-
fore Camera-descent (t+2) shows degradation on accuracy
(55.30% v.s. 61.55%) compared to Camera-descent (t+1).
The Scene-descent baseline performs less satisfactorily in
accuracy (57.65%) due to its strong assumption that the ini-
tial camera pose estimation is roughly accurate, which could

8



be wrong and lead the agent to a completely wrong position.
Our algorithm outperforms all the approaches in the cam-
era pose accuracy (83.05%) with limited steps being taken.
Similar phenomenon can also be observed in the scanned
real-world indoor scenes (ACL-real). We further visualize
the accuracy that progresses along the increasing maximum
step length in Figure 4, where our algorithm is consistently
better than all the others.

Comparison with ANL: ANL is trained on the discrete
belief map of resolution 20cm, 90◦, which is almost the
upper bound of camera pose scale it can achieve. Therefore,
it performs poorly on the finer-scale accuracy (5cm, 5◦) as
expected. In ANL, the passive localization module is im-
plemented as the image similarity computation, performed
between the current agent observation and each memory
image sampled uniformly within the complete scene. The
obtained position-wise image similarity (camera uncertainty)
forms a belief map, which is absorbed by the active localiza-
tion module (policy network) to determine the action. In our
approach, the passive localization module is implemented as
the camera pose estimator for the current observation, and
the scene uncertainty component is taken by the active local-
ization module for action selection. The two approaches are
theoretically different, hence it is non-trivial to deploy one
in the other for further improvement.

Ablation study: We justify our algorithm by ablating
three components, the exploration rewardRe, camera-driven
scene map M (t)

cd and world-driven scene map M (t)
wd. Experi-

mentally, we observe that our algorithm benefits from all the
three components.

Time analysis and intelligent behavior: It takes only
9.59s to adapt the passive localizer in a novel scene, and
1.31s to evaluate our entire algorithm for a single step. Our
learned intelligent behaviors are visualized in Figure 5.

5. Conclusion

In this paper, we propose a novel active camera localiza-
tion algorithm, consisting of a passive and an active localiza-
tion module. The former one estimates the accurate camera
pose in the continuous pose space. The latter one learns a
reinforcement learning policy from the explicitly modeled
camera and scene uncertainty component for accurate cam-
era localization.

Limitation and future work: Figure 5 e) demonstrates
a failure case, where the agent is initialized in a room with
a small exit and large scene uncertainties. It fails to leave
the room before reaching the maximum step length. Al-
though we already employ a naive exploration reward to
avoid repeated traversal in the same region, a smarter design,
such as frontier-based exploration [17] and long-term goal
planning [12], can be incorporated in the future for further
improvement.
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